Microgrids
opportunities
within Spain's
Smart Grids
initiatives

Santiago 2013 SYMPOSIUM ON MICROGRIDS

September 11-12

Angel Díaz Gallo angel.diaz@tecnalia.com Director of Smart Grids Business Area TECNALIA

Organised in 7 Business Divisions: we work from the experience and the expertise we have acquired in the markets in which we operate, with an efficient and proactive attitude.

2012-2014 TECNALIA STRATEGIC PLAN

ENERGY AND ENVIRONMENT// Challenges and Research Lines

Content

- 1. Smart Grids market in Spain
- 2. Reference of main SG initiatives
- 3. Opportunities for microgrids projects
- 4. Conclusions

Global smart grid market opportunity

The above figures represent planned investment in smart grid infrastructure.

TOP TEN COUNTRIES FOR FEDERAL SMART GRID INVESTMENT, 2010

SOURCE: Zpryme Research & Consulting

Figures 13 - Investments in R&D and demonstration SG projects across Europe

Source: Joint Research Centre - European Commission

Smart Grids will favor the sustainable growth of the Spanish economy

Increased productivity and GDP growth

↑ 0.2%-0.35% (€2,300-3,800M/year) Undertaking and leading the process to transform the power system with Smart Grids could improve Spain's Gross Domestic Product +0.2% to +0.35%

- Development of the Spanish power and technology sectors and creation of jobs
- Adjustment of the trade balance by reducing imports of primary fossil energy
- Increase in country productivity derived from an improvement in supply quality

Job creation

40,000-50,000 iobs Developing Smart Grids will generate 20,000 direct jobs in Spain and 20,000 to 30,000 indirect jobs in high added value activities

- Manufacturing electrical and communications components
- Setting up, installing in situ and maintaining electrical and communications installations
- Developing companies on energy management businesses

Reduction of energy dependence

5.3 p.p¹ (€4,050M/year) Spain's energy dependence could be cut 5.3 percentage points by 2020 (10,800 ktep less primary fossil energy)

- Increase in the power system's energy efficiency
- Effective integration of renewable energies and e-vehicles²

For the power sector, energy dependence could drop 12.2 p.p. by 2020

Reduction of CO2 emissions

√ 3.7%¹
(€160M/year)

Spain's CO2 emissions could drop 3.7% by 2020 (15 million tons less)

- Less fossil fuels used to generate electricity
- Effective integration of renewable energies and e-vehicles²

For the power sector, CO2 emissions could drop by 15% by 2020

Includes integration of renewable energies, the effect of Smart Grids and the addition of 1 million e-vehicles.
 THE BOSTON CONSULTING GROUP

FutuRed

SG benefits will total between €19 and 36B, generating value of 2 to 3.5 times the investment needed for their development

For each stakeholder, investments and efforts need to be aligned with benefits

Investment required

Grid elements

- Smart meters
- Automation of Medium and High Voltage, including remote control, supervision and metering elements
- Advanced applications to manage grids and operate power system
- Smart elements in High Voltage

Customer elements

Power management systems that respond to system's price signaling, adapting customers' consumption patterns

For each stakeholder, investments and efforts need to be aligned with benefits

- · Regulated businesses: reasonable compensation
- Liberalized businesses: attractive business plans

Intrinsic benefits

Direct benefits

- Reduction of energy intensity and flattening the demand curve
- Increase in system's energy efficiency (fewer losses)
- ✓ Increase in systems' operation and maintenance efficiency
- Optimization of assets utilization and extension of assets life cycle

Indirect benefits

 Increase in the country's productivity from improvements in power supply quality

Additionally, Smart Grids will facilitate distributed energy resources' integration (renewables, distributed generation and e-vehicle, etc.)

Average investment value. Arithmetic mean between minimum and maximum scenarios.

Note: Benefit scenarios calculated as the net present value of the total benefit in 20 years, assuming an 8% discount rate.

THE BOSTON CONSULTING GROUP

tecnalia) Inspiring

- Smart grids → combination of traditional facilities with state-of-the-art ICTs technology
- 2. Compliance with legislation = opportunity
- 3. 60 M€ project investment
 - Roll out of (200,000+27,000) smart meters
 - HV/MV/LV: 1,100 secondary substations and 3 rural primary substations
 - Integration of DG and EVs
- 4. Improved energy and environmental efficiency
- 5. Driver project for Basque companies
- 6. Reference project worldwide

An open public solution: PRIME protocol

IBERDROLA

Smart secondary substations:

- 1,100 secondary substations will be upgraded to provide the following services:
- •235 with remote management (level 1 basic)
- •700 with remote management and monitoring (level 2 monitoring)
- •165 with remote management, monitoring and automation (level 3 automation)

PRICE: "Smart Grid Project in Henares Region"

PRICE (Proyecto de Redes Inteligentes en el Corredor del Henares) is a joint Demonstration Project led by IBERDROLA and GAS NATURAL FENOSA, consisting in the deployment of a global intelligent electrical network solution for their power distribution systems in a shared geographic area, in order to get the experience and knowledge in deploying and managing intelligent power systems.

tecnalia) Inspiring Business

- ☐ Monitor, automation and remote control the MV/LV power network, improving its observability, operation and maintenance.
- ☐ Improve the integration of already existing distributed generation (73.300 kW).
- ☐ Forecasting and monitoring system for distributed generation based on state estimation.
- ☐ DSVC system for voltage stabilization in MV feeders and LV generators.
- ☐ Specification of the Distributed Generation Control Center
- ☐ Contribution to interoperability and common open standards.

500.000 inhabitants involved

200.000 customers

> 1.500 MV/LV secondary substations

Urban, Semi-urban and Rural network topologies

Budget: 34 M€ (excluding smart meters cost)

Large collaboration: 21 partners

Execution period: 2011-2014

PRICE Project

SmartCity aims to an optimal integration of renewable energy into the grid, bringing the generation to the demand through the establishment of **new management models** for the energy micro-generation, considering energy storage for building HVAC, street lighting and electric transport.

SmartCity will encourage the use of **electric vehicle**, with the installation of charging posts and the introduction of a fleet of EVs.

New **smart meters** for remote management will enable more sustainable electricity consumptions.

Advanced and remote telecommunications enable new energy management and enhancing service quality.

Smart Energy Management

Plataforma Española de Redes Eléctricas

Inventario de microgrids existentes en España

TECNALIA's microgrid platform

Power Sources:

- Diesel Generator (2x55kW)
- μTurbine (50kW)
- Pacific Power Sources programmable network simulator- (2x62.5kVA/50kW)
- PV single phase (0.6kW and 1.6kW)
- PV (3.6kW three phase)
- Wind Turbine (single phase 6kW)
- Ballard Fuel cell (1 kVA)
- DC power source (125 kW)

Static Switch:

Islanded – Grid connected

Main switching board:

- Three busbars (Three phase)
- Most devices can be connected to any busbar

Tests switching board:

Concentrates all load banks at a single connection

Communication network:

• Ethernet, WiFi, RS 485 & RS 232, TCP/IP, ModBus...

Storage:

- Flywheel (250kVA)
- Ultracapacitor bank (48V 2.8MJ)
- Battery banks (48V-1925Ah and 24V-1120Ah)

Controllable load:

- Resistive load bank (150kW & 55kW)
- Reactive load banks (up to 200kVARr reactive or capacitive)

Other:

- Line simulator (R & X)
- DC Network, Rectifier and PM1000 Inverters (2x100kW)
- Hidrotec
- EV platform
- Kubik

Conclusions on the inventory

- 19 installations / 5 MW
- Purpose: pilot projects / demo / experimental platform
- Most of them can work connected or isolated
- •All of them are private distribution networks connected to the main grid (utility) in a single point
- •There is a regulation under discussion (net balance) that can mean a great opportunity for microgrids deployment in Spain
- Several laboratories have developed experimental capacities for technology testing
- Some of them are even working under real conditions

www.tecnalia.com

Thank-you for your attention

Angel Díaz Gallo angel.diaz@tecnalia.com Director of Smart Grids Business Area TECNALIA